Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

CDK5 Products

(Cyclin-Dependent Kinase 5 (CDK5))

Categories

Proline-directed serine/threonine-protein kinase essential for neuronal cell cycle arrest and differentiation and may be involved in apoptotic cell death in neuronal diseases by triggering abortive cell cycle re-entry. Interacts with D1 and D3- type G1 cyclins. Phosphorylates SRC, NOS3, VIM/vimentin, p35/CDK5R1, MEF2A, SIPA1L1, SH3GLB1, PXN, PAK1, MCAM/MUC18, SEPT5, SYN1, DNM1, AMPH, SYNJ1, CDK16, RAC1, RHOA, CDC42, TONEBP/NFAT5, MAPT/TAU, MAP1B, histone H1, p53/TP53, HDAC1, APEX1, PTK2/FAK1, huntingtin/HTT, ATM, MAP2, NEFH and NEFM. Regulates several neuronal development and physiological processes including neuronal survival, migration and differentiation, axonal and neurite growth, synaptogenesis, oligodendrocytes differentiation, synaptic plasticity and neurotransmission, by phosphorylating key proteins. Activated by interaction with CDK5R1 (p35) and ATP6V0D1 (p39), especially in post-mitotic neurons, and promotes CDK5R1 (p35) expression in an autostimulation loop. Phosphorylates many downstream substrates such as Rho and Ras family small GTPases (e.g. PAK1, RAC1, RHOA, CDC42) or microtubule-binding proteins (e.g. MAPT/TAU, MAP2, MAP1B), and modulates actin dynamics to regulate neurite growth and/or spine morphogenesis. Phosphorylates also exocytosis associated proteins such as MCAM/MUC18, SEPT5, SYN1, and PCTAIRE 1/CDK16 as well as endocytosis associated proteins such as DNM1, AMPH and SYNJ1 at synaptic terminals. In the mature central nervous system (CNS), regulates neurotransmitter movements by phosphorylating substrates associated with neurotransmitter release and synapse plasticity\; synaptic vesicle exocytosis, vesicles fusion with the presynaptic membrane, and endocytosis. Promotes cell survival by activating anti-apoptotic proteins BCL2 and STAT3, and negatively regulating of JNK3/MAPK10 activity. Phosphorylation of p53/TP53 in response to genotoxic and oxidative stresses enhances its stabilization by preventing ubiquitin ligase-mediated proteasomal degradation, and induces transactivation of p53/TP53 target genes, thus regulating apoptosis. Phosphorylation of p35/CDK5R1 enhances its stabilization by preventing calpain-mediated proteolysis producing p25/CDK5R1 and avoiding ubiquitin ligase-mediated proteasomal degradation. During aberrant cell-cycle activity and DNA damage, p25/CDK5 activity elicites cell-cycle activity and double-strand DNA breaks that precedes neuronal death by deregulating HDAC1. DNA damage triggered phosphorylation of huntingtin/HTT in nuclei of neurons protects neurons against polyglutamine expansion as well as DNA damage mediated toxicity. Phosphorylation of PXN reduces its interaction with PTK2/FAK1 in matrix-cell focal adhesions (MCFA) during oligodendrocytes (OLs) differentiation. Negative regulator of Wnt/beta-catenin signaling pathway. Activator of the GAIT (IFN-gamma-activated inhibitor of translation) pathway, which suppresses expression of a post-transcriptional regulon of proinflammatory genes in myeloid cells\; phosphorylates the linker domain of glutamyl-prolyl tRNA synthetase (EPRS) in a IFN-gamma- dependent manner, the initial event in assembly of the GAIT complex. Phosphorylation of SH3GLB1 is required for autophagy induction in starved neurons. Phosphorylation of TONEBP/NFAT5 in response to osmotic stress mediates its rapid nuclear localization. MEF2 is inactivated by phosphorylation in nucleus in response to neurotoxin, thus leading to neuronal apoptosis. APEX1 AP-endodeoxyribonuclease is repressed by phosphorylation, resulting in accumulation of DNA damage and contributing to neuronal death. NOS3 phosphorylation down regulates NOS3-derived nitrite (NO) levels. SRC phosphorylation mediates its ubiquitin- dependent degradation and thus leads to cytoskeletal reorganization. May regulate endothelial cell migration and angiogenesis via the modulation of lamellipodia formation. Involved in dendritic spine morphogenesis by mediating the EFNA1- EPHA4 signaling.

antibodies-online.com stands for high-quality research products. Search, find and order tools with extensive validation data, images, references. Our scientific customer service is always at your disposal if you have any questions about the selection or application of our products.

Featured CDK5 Categories

CDK5 Antibodies

High quality antibodies with extensive validation data.

CDK5 ELISA Kits

Reliable ELISA kits for a wide range of species.

CDK5 Proteins

Proteins for various applications incl. WB, ELISA, IF etc.

Recommended CDK5 Antibodies

Product
Reactivity
Application
Validations
Cat. No.
Quantity
Datasheet
Reactivity Human
Application WB, ELISA, IHC, FACS, ICC
Validations
  • (2)
  • (5)
Cat. No. ABIN969041
Quantity 100 μL
Datasheet Datasheet
Reactivity Human
Application WB, IF, IP
Validations
  • (5)
Cat. No. ABIN6138319
Quantity 100 μL
Datasheet Datasheet
Reactivity Human
Application WB, ELISA, IHC, IF
Validations
  • (4)
Cat. No. ABIN7148931
Quantity 100 μg
Datasheet Datasheet

Recommended CDK5 ELISA Kits

Product
Reactivity
Analytical Method
Validations
Cat. No.
Quantity
Datasheet
Reactivity Rat
Analytical Method Quantitative Sandwich ELISA
Validations
  • (1)
Cat. No. ABIN6966168
Quantity 96 tests
Datasheet Datasheet
Reactivity Human
Analytical Method Quantitative Sandwich ELISA
Validations
  • (1)
Cat. No. ABIN6966169
Quantity 96 tests
Datasheet Datasheet
Reactivity Mouse
Analytical Method Quantitative Sandwich ELISA
Validations
  • (1)
Cat. No. ABIN6966167
Quantity 96 tests
Datasheet Datasheet

Recommended CDK5 Proteins

Product
Reactivity
Source
Validations
Cat. No.
Quantity
Datasheet
Reactivity Human
Source Wheat germ
Validations
  • (1)
  • (1)
Cat. No. ABIN1348956
Quantity 10 μg
Datasheet Datasheet
Reactivity Human
Source Baculovirus infected Insect Cells
Validations
  • (1)
Cat. No. ABIN5855017
Quantity 100 μg
Datasheet Datasheet
Reactivity Human
Source Escherichia coli (E. coli)
Validations
Cat. No. ABIN2128476
Quantity 100 μg
Datasheet Datasheet

Latest Publications for our CDK5 products

Terse, Amin, Hall, Bhaskar, B K, Utreras, Pareek, Pant, Kulkarni: "Protocols for Characterization of Cdk5 Kinase Activity." in: Current protocols, Vol. 1, Issue 10, pp. e276, (2021) (PubMed).

Amin, Zheng, Bk, Shukla, Skuntz, Grant, Steiner, Bhaskar, Pant: "The interaction of Munc 18 (p67) with the p10 domain of p35 protects in vivo Cdk5/p35 activity from inhibition by TFP5, a peptide derived from p35." in: Molecular biology of the cell, Vol. 27, Issue 21, pp. 3221-3232, (2017) (PubMed).

Cao, Jia, Wei, Liu, Liu, Li: "Traditional Chinese Medicine Huannao Yicong Decoction Extract Decreases Tau Hyperphosphorylation in the Brain of Alzheimer's Disease Model Rats Induced by Aβ1-42." in: Evidence-based complementary and alternative medicine : eCAM, Vol. 2016, pp. 6840432, (2016) (PubMed).

Yin, Qi, Ren, Wang, Jiang, Feng, Cui: "Roscovitine treatment caused impairment of fertilizing ability in mice." in: Toxicology letters, Vol. 237, Issue 3, pp. 200-9, (2015) (PubMed).

Zhang, Lu, Mao, Ahmed, Yang, Zhou, Jennings, Rodriguez-Aguayo, Lopez-Berestein, Miranda, Qiao, Baladandayuthapani, Li, Sood, Liu, Le, Bast: "CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis." in: PLoS ONE, Vol. 10, Issue 7, pp. e0131833, (2015) (PubMed).

Li, Wang, Guo, Huang, Zhao, Zhu, Ma, Liang, Zhang, Huang, Wan: "Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism." in: Experimental and therapeutic medicine, Vol. 10, Issue 5, pp. 1643-1652, (2015) (PubMed).

Li, Zhang, Zhu, Zhang, Lin, Xu, Yang, Hao, Zhang: "A new treatment for cognitive disorders related to in utero exposure to alcohol." in: Neural regeneration research, Vol. 8, Issue 18, pp. 1702-13, (2014) (PubMed).

Li, Liu, Zhang, Ye, Qiao, Ling, Wu, Zhang, Yu: "Characterization of a novel human CDK5 splicing variant that inhibits Wnt/beta-catenin signaling." in: Molecular biology reports, Vol. 37, Issue 5, pp. 2415-21, (2010) (PubMed).

Choi, Lee, Park, Sung, Lee, Shin, Ryu, Kim: "Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population." in: Journal of human genetics, Vol. 54, Issue 5, pp. 298-303, (2009) (PubMed).

Zhang, Herrup: "Cdk5 and the non-catalytic arrest of the neuronal cell cycle." in: Cell cycle (Georgetown, Tex.), Vol. 7, Issue 22, pp. 3487-90, (2008) (PubMed).

Synonyms and alternative names related to CDK5

cyclin dependent kinase 5 (CDK5), cyclin-dependent kinase 5 (Cdk5), Cyclin-dependent kinase 5 (Cdk5), cyclin-dependent kinase 5 (cdk5), cyclin-dependent kinase 5 L homeolog (cdk5.L), cyclin dependent kinase 5 (Cdk5), Cyclin-dependent-like kinase 5 (cdk-5), AW048668, CDK5, cdk5, CG8203, Crk6, DmCdk5, Dmel\\CG8203, PSSALRE, zgc:101604

Protein level used designations for CDK5

  • TPKII catalytic subunit
  • cell division protein kinase 5
  • protein kinase CDK5 splicing
  • serine/threonine-protein kinase PSSALRE
  • tau protein kinase II catalytic subunit
  • CR6 protein kinase
  • CG8203-PA
  • Cdk5-PA
  • PDPK
  • proline-directed protein kinase 33 kDa subunit
  • neuronal cyclin-dependent kinase 5
  • Cell division protein kinase 5
  • cyclin-dependent-like kinase 5
You are here:
Support