Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

Alpha, beta-Tubulin Dimer antibody

Reactivity: Pig, Human, Mouse, Non-Human Primate, Rat WB, ICC, FACS Host: Mouse Monoclonal TU-10 unconjugated
Catalog No. ABIN125731
  • Target
    Alpha, beta-Tubulin Dimer
    Reactivity
    Pig, Human, Mouse, Non-Human Primate, Rat
    Host
    • 2
    Mouse
    Clonality
    • 2
    Monoclonal
    Conjugate
    • 2
    Un-conjugated
    Application
    Western Blotting (WB), Immunocytochemistry (ICC), Flow Cytometry (FACS)
    Specificity
    The antibody TU-10 recognizes alpha, beta-tubulin heterodimer, a basic intracellular structural unit of microtubules. Alpha- and beta-tubulins form approximately 100 kDa tubulin heterodimer, a globular protein that polymerizes to form microtubules.
    Cross-Reactivity (Details)
    Broad species reactivity
    Purification
    Purified by sequential steps of physicochemical fractionation (differential precipitation and solid-phase chromatography methods).
    Purity
    > 95 % (by SDS-PAGE)
    Immunogen
    Microtubule proteins from porcine brain
    Clone
    TU-10
    Isotype
    IgM
  • Application Notes
    Western blotting: Recommended dilution: 1 μg/mL, reducing conditions.
    Restrictions
    For Research Use only
  • Concentration
    1 mg/mL
    Buffer
    Tris buffered saline (TBS), pH 8.0, 15 mM sodium azide
    Preservative
    Sodium azide
    Precaution of Use
    This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
    Handling Advice
    Do not freeze.
    Storage
    4 °C
    Storage Comment
    Store at 2-8°C. Do not freeze.
  • Target
    Alpha, beta-Tubulin Dimer
    Background
    The microtubules are intracellular dynamic polymers made up of evolutionarily conserved polymorphic alpha/beta-tubulin heterodimers and a large number of microtubule-associated proteins (MAPs). The microtubules consist of 13 protofilaments and have an outer diameter 25 nm. Microtubules have their intrinsic polarity, highly dynamic plus ends and less dynamic minus ends. Microtubules are required for vital processes in eukaryotic cells including mitosis, meiosis, maintenance of cell shape and intracellular transport. Microtubules are also necessary for movement of cells by means of flagella and cilia. In mammalian tissue culture cells microtubules have their minus ends anchored in microtubule organizing centers (MTOCs). The GTP (guanosintriphosphate) molecule is an essential for tubulin heterodimer to associate with other heterodimers to form microtubule. In vivo, microtubule dynamics vary considerably. Microtubule polymerization is reversible and a populations of microtubules in cells are on their minus ends either growing or shortening –, this phenomenon is called dynamic instability of microtubules. On a practical level, microtubules can easily be stabilized by the addition of non-hydrolysable analogues of GTP (eg. GMPPCP) or more commonly by anti-cancer drugs such as Taxol. Taxol stabilizes microtubules at room temperature for many hours. Using limited proteolysis by enzymes both tubulin subunits can be divided into N-terminal and C-terminal structural domains. The alpha-tubulin (relative molecular weight around 50 kDa) is globular protein that exists in cells as part of soluble alpha/beta-tubulin dimer or it is polymerized into microtubules. In different species it is coded by multiple tubulin genes that form tubulin classes (in human 6 genes). Expressed tubulin genes are named tubulin isotypes. Some of the tubulin isotypes are expressed ubiquitously, while some have more restricted tissue expression. Alpha-tubulin is also subject of numerous post-translational modifications. Tubulin isotypes and their posttranslational modifications are responsible for multiple tubulin charge variants - tubulin isoforms. Heterogeneity of alpha-tubulin is concentrated in C-terminal structural domain. The beta-tubulin (relative molecular weight around 50 kDa) is counterpart of alpha-tubulin in tubulin heterodimer, it is coded by multiple tubulin genes and it is also posttranslationally modified. Heterogeneity of subunit is concentrated in C-terminal structural domain.,TUBA, TUBB
You are here:
Support